
Audit Report

FortyTwo

v1.1

June 5, 2023

1



Table of Contents
Table of Contents 2

License 3

Disclaimer 3

Introduction 5

Purpose of This Report 5

Codebase Submitted for the Audit 5

Methodology 6

Functionality Overview 6

How to Read This Report 7

Code Quality Criteria 8

Summary of Findings 9

Detailed Findings 11

1. Autocompounder is vulnerable to share inflation attack 11

2. Attackers can cause batch unbondings to fail, preventing users from unstaking
liquidity pool tokens 12

3. Funds in the proxy contract may be unintentionally forwarded to others 12

4. Deposit and withdrawal fees are not charged 13

5. Compound function is susceptible to sandwich attack 14

6. Incorrect cooldown condition locks unbonding 14

7. Unbonding cooldowns are not respected 15

8. Compounding will fail for zero performance fees 15

9. Hard-coded slippage value makes deposits susceptible to sandwich attacks 16

10. Non-updatable configuration can not reflect changes in staking contract 16

11. Minting of zero vault tokens possible 17

12. Unused variable in codebase 17

13. Lack of validation upon deposit lead to inefficiencies 17

14. Remove TODO comments 18

15. Unused commented code in codebase 18

16. Misleading variable name when withdrawing liquidity 18

17. calculate_withdrawals sets expiration to current block height which may become
problematic if the function is exposed in a future upgrade 19

18. Users cannot query fees through smart queries 19

19. Panicking macros and debugging code 20

20. Overflow checks not enabled for release profile 20

21. Additional funds sent to the contract are lost 20

Appendix A: Test Cases 22

1. Test case for “Compounding will fail for zero performance fees” 22

2



License

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES
4.0 INTERNATIONAL LICENSE.

3

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/


Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Oak Security

https://oaksecurity.io/
info@oaksecurity.io

4

https://oaksecurity.io/
mailto:info@oaksecurity.io


Introduction

Purpose of This Report

Oak Security has been engaged by Hitchhikers Incorporated to perform a security audit of
FortyTwo.

The objectives of the audit are as follows:

1. Determine the correct functioning of the protocol, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following target:

Repository https://github.com/fortytwomoney/modules

Commit 283bf670fd48c5732ffa359fb88945f8af058ac8

Scope All contracts were in scope.

5

https://github.com/fortytwomoney/modules


Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line-by-line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
FortyTwo is a decentralized multichain yield optimizer for the Cosmos ecosystem, designed to
help users earn passive income on their crypto holdings. It employs investment strategies to
automatically optimize rewards from liquidity pools, automated market-making projects, and
various DeFi yield farming opportunities.

6



How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, or Resolved.

Note that audits are an important step to improving the security of smart contracts and can
find many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

7



Code Quality Criteria
The auditor team assesses the codebase’s code quality criteria as follows:

Criteria Status Comment

Code complexity Medium-High The codebase relies on heavy
integration with Abstract’s contracts,
SDK, and APIs which are
out-of-scope of this audit.

Code readability and clarity Low-Medium There are outstanding TODO
comments and debug lines in the
codebase, which suggests the
codebase is still under
development.

Level of documentation Medium No sufficient documentation was
provided during the audit.

Test coverage Low-Medium -

8



Summary of Findings

No Description Severity Status

1 Autocompounder is vulnerable to share inflation
attack

Critical Resolved

2 Attackers can cause batch unbondings to fail,
preventing users from unstaking liquidity pool
tokens

Critical Resolved

3 Funds in the proxy contract may be unintentionally
forwarded to others

Critical Resolved

4 Deposit and withdrawal fees are not charged Critical Resolved

5 The compound function is susceptible to sandwich
attack

Major Resolved

6 Incorrect cooldown condition locks unbonding Major Resolved

7 Unbonding cooldowns are not respected Major Resolved

8 Compounding will fail for zero performance fees Minor Resolved

9 Hard-coded slippage value makes deposits
susceptible to sandwich attacks

Minor Resolved

10 Non-updatable configuration can not reflect
changes in Staking contract

Minor Resolved

11 Minting of zero vault tokens possible Minor Resolved

12 Unused variable in codebase Informational Resolved

13 Lack of validation upon deposit lead to
inefficiencies and locks additional funds

Informational Resolved

14 Remove TODO comments Informational Resolved

15 Unused commented code in codebase Informational Resolved

16 Misleading variable name when withdrawing
liquidity

Informational Resolved

17 calculate_withdrawals sets expiration to
current block height which may become
problematic if the function is exposed in a future
upgrade

Informational Resolved

9



18 Users cannot query fees through smart queries Informational Resolved

19 Panicking macros and debugging code Informational Resolved

20 Overflow checks not enabled for release profile Informational Resolved

21 Additional funds sent to the contract are lost Informational Resolved

10



Detailed Findings
1. Autocompounder is vulnerable to share inflation attack

Severity: Critical

The compute_mint_amount function in
contracts/autocompounder/src/handlers/reply.rs:130 is vulnerable to a
share inflation attack. A share inflation attack represents a scenario where a malicious actor
artificially inflates the supply of tokens, potentially manipulating the token's value and diluting
other holders' shares.

Currently, the function computes the mint amount by using integer division. Due to the nature
of integer division, results are always floored. This allows an attacker to inflate their current
shares while stealing funds from unsuspecting users.

The compute_mint_amount is susceptible to this attack because the denominator of the
integer division staked_lp can be manipulated for Astroport, representing the total staked
amount of the proxy address.

An example attack scenario:

1. The attacker makes the first deposit of 1 token and thus receives one share.
2. The victim wants to deposit funds into the protocol, but the attacker front-runs it. For

simplicity, let’s assume that the liquidity pool tokens deposited by the victim will be
10_000.

3. The attacker provides liquidity such that the liquidity pool tokens amount is 5001
((10_000/2) + 1). To do this, they call the ProvideLiquidity message in the
Astroport contract while specifying auto_stake as true and the receiver as the
proxy contract’s address, causing the generator to stake on behalf of the proxy
contract.

4. This causes the staked_lp value from the query_stake function to include the
liquidity provided by the attacker, which is 5002 (5001+1).

5. The victim’s transaction is processed. When minting the vault shares, the
compute_mint_amount function will be evaluated as 1.99 (1 * (10000 /
5002)), which rounds down to 1. Consequently, the victim only receives one share.

6. Finally, the attacker redeems their shares. The computed
lp_tokens_withdraw_amount value will be evaluated to 7501 ((1/2) *
15002), earning the attacker an extra 2499 (7501-5002) liquidity pool tokens.

11

https://github.com/astroport-fi/astroport-core/blob/c73a2db3c0b4f069e906d90970e1b72a5cf71bbf/contracts/pair/src/contract.rs#L318-L319
https://github.com/astroport-fi/astroport-core/blob/main/contracts/pair/src/contract.rs#L487-L506
https://github.com/astroport-fi/astroport-core/blob/main/contracts/pair/src/contract.rs#L487-L506


Recommendation

We recommend enforcing a minimum amount that needs to be met in the first deposit. This
will greatly increase the cost of orchestrating a share inflation attack. Note that it is common
practice to mint “dead shares” to the protocol to increase the cost of the attack further. For
more details, please see Astroport’s implementation.

Status: Resolved

2. Attackers can cause batch unbondings to fail, preventing users
from unstaking liquidity pool tokens

Severity: Critical

In contracts/autocompounder/src/handlers/execute.rs:168-173, all pending
claims are iterated without pagination and processed in the calculate_withdrawals
function. If there are too many entries, the transaction will fail due to an out-of-gas error, which
will effectively block any withdrawals.

An attacker can exploit this by creating a parent contract that creates many dummy child
contracts to call the Cw20HookMsg::Redeem message. This would cause the
PENDING_CLAIMS storage to store the addresses, as seen in lines 280-291, eventually
causing the loop in lines 432-462 to fail.

Currently, the attacker requires a small number of initial funds to execute the attack. In the
future, this cost will decrease as CW20 tokens will allow zero-amount transfers.

Recommendation

We recommend processing batch unbondings in batches to prevent out-of-gas errors.

Status: Resolved

3. Funds in the proxy contract may be unintentionally forwarded to
others

Severity: Critical

When processing replies with the LP_WITHDRAWAL_REPLY_ID identifier, all available asset
balances in the proxy contract are sent to the caller. This happens when users redeem or
withdraw claims in
contracts/autocompounder/src/handlers/reply.rs:160-164.

As the proxy contract is shared between modules, other modules might rely on it temporarily
to hold funds. For example, a DCA contract automatically withdraws native funds to purchase

12

https://github.com/astroport-fi/astroport-core/blob/c73a2db3c0b4f069e906d90970e1b72a5cf71bbf/contracts/pair_concentrated/src/contract.rs#L470-L492
https://github.com/CosmWasm/cw-plus/commit/8819d526fbe50d177dee954ab680c8abb660e3b7


assets at a specific interval, or a limit order contract automatically purchases assets at a
specific price.

As a result, malicious users can steal excess funds in the proxy contract. For instance, an
attacker may notice that the proxy contract has an excess balance of USDC to be used by a
DCA contract. The attacker then redeems their vault token to also receive the excess USDC
as part of the lp_withdrawal_reply function.

This issue is also present in the fee_swapped_reply function, where all available funds in
the contract are sent as long they have the same denomination as the fees (see lines
331-338).

Recommendation

We recommend modifying the reply handlers to send only the required amount instead of
transferring all available assets. This can be achieved by recording the proxy contract's old
balance before the action, and the amount to be sent can be calculated by taking the
difference between the old and new balances.

Status: Resolved

4. Deposit and withdrawal fees are not charged

Severity: Critical

In packages/forty-two/src/autocompounder.rs:142-143, deposit and
withdrawal fees are defined as part of the fee configuration. However, neither is used within
the codebase to collect user deposit fees or withdrawal fees to prevent bad actors from
exploiting the compound system.

As stated in the documentation, withdrawal fees deter users from depositing right before the
compound function is called and immediately withdrawing, thus taking a percentage of gains
made by legitimate users.

Assuming no unbonding period is configured, the lack of a withdrawal fee would allow
attackers to skim rewards from other users by depositing immediately before the
auto-compound is performed, getting additional rewards with a minimum deposit time.

Recommendation

We recommend implementing functionality to charge deposit and withdrawal fees.

Status: Resolved

13



5. Compound function is susceptible to sandwich attack

Severity: Major

The swap_rewards_with_reply function in
contracts/autocompounder/src/handlers/reply.rs:397 has a hard-coded max
spread of 50%. Using such a large max spread may allow for value to be extracted from the
transaction through sandwiching, for example by MEV bots.

The swap_rewards_with_reply function is called during the contract’s compound
operation, which is permissionless. This means that an attacker can initiate the compound
functionality while manipulating the pools in their favor when they feel it would present the
most value, all as part of a bundle, without even having to watch the mempool for the target
transaction.

For example, a DEX like Astroport specifies a default spread of 0.5% and a maximum allowed
spread amount of 50%. We recognize that the spread is most likely set at 50% to avoid
causing an error in the compound functionality, but a value so large presents a large
opportunity for attackers.

While some low liquidity pairs may need a higher slippage tolerance, it is best practice to set
a low default value. A low max spread may cause the compound function to fail occasionally,
but it limits the value to be lost due to sandwiching. The downside to a low spread is that
more transactions may fail, so the gas cost over time may increase due to failed executions.

A similar hardcoded maximum spread value also affects the compound function in
contracts/autocompounder/src/handlers/reply.rs:229.

Recommendation

We recommend creating an updatable config parameter representing the max spread to be
used in the compound functionality for both instances described above.

Status: Resolved

6. Incorrect cooldown condition locks unbonding

Severity: Major

The check_unbonding_cooldown function is intended to enforce that the cooldown
period for batch unbonding has passed in
contracts/autocompounder/src/handlers/execute.rs:471-488. However,
there is a missing operand in the condition in line 479 that reverses it. If
latest_unbonding plus min_cooldown is in the past, the function will raise an
UnbondingCooldownNotExpired error.

Therefore, the batch_unbond function is locked when the cooldown has passed and only
can only be used before the cooldown has ended.

14



Recommendation

We recommend adding a negation operand (!) so the condition looks like the following:

if !latest_unbonding.add(min_cooldown)?.is_expired(&env.block) {

return Err(AutocompounderError::UnbondingCooldownNotExpired {

min_cooldown,

latest_unbonding,

});

}

Status: Resolved

7. Unbonding cooldowns are not respected

Severity: Major

In contracts/autocompounder/src/handlers/execute.rs:471-488, the
check_unbonding_cooldown function attempts to verify the last unbonding time has
exceeded the minimum unbonding cooldown time. However, the LATEST_UNBONDING
storage state is never stored anywhere in the codebase. Consequently, batch unbondings
can be repeatedly performed without respecting the configured cooldown period.

This issue also causes the query_latest_unbonding function to fail when loading
LATEST_UNBONDING from the storage.

We classify this issue as major because it affects the correct functioning of the system.

Recommendation

We recommend storing the latest unbonding time after performing a batch unbond.

Status: Resolved

8. Compounding will fail for zero performance fees

Severity: Minor

In contracts/autocompounder/src/handlers/reply.rs:190-200, the fees are
deducted from rewards and sent to the commission address. However, the swap will fail if the
performance fee is zero, preventing the auto-compounding from working successfully.

Please see the test_zero_performance_fees test case to reproduce the issue.

We classify this issue as minor because the manager contract can recover to a correct state
by updating the performance fees.

15



Recommendation

We recommend skipping the swap if the performance fee is zero.

Status: Resolved

9. Hard-coded slippage value makes deposits susceptible to
sandwich attacks

Severity: Minor

The deposit function in
contracts/autocompounder/src/handlers/execute.rs:143 specifies a
hard-coded max spread value of 5%. Depending on the pair that liquidity is being provided for,
this may be a too large value, making the deposit functionality vulnerable to a sandwich
attack.

Recommendation

We recommend allowing the user to specify the spread depending on which pair they are
providing and adding a config parameter that enforces an upper limit max_spread to ensure
that the user does not supply too large a value.

Status: Resolved

10. Non-updatable configuration can not reflect changes in staking
contract

Severity: Minor

In contracts/autocompounder/src/handlers/instantiate.rs:139-148, the
configuration is defined as taking both min_unbonding_cooldown and
unbonding_period directly from the staking contract. However, there is no entry point to
update this data.

In case the affected parameters are modified in the staking contract, this will cause
inconsistencies in the unbonding mechanism. The underlying messages directed to the
staking contract could fail without the users being able to understand why, as the reported
information will not reflect the new limits.

Recommendation

We recommend implementing an additional entry point that queries the staking contract and
updates the affected parameters if required.

Status: Resolved

16



11. Minting of zero vault tokens possible

Severity: Minor

The autocompounder contract allows for the minting of zero shares upon depositing in
some edge cases. This is possible as CW20 tokens now allow the minting of zero tokens, and
the compute_mint_amount function does not perform further validation on the returned
amount of shares to be minted in
contracts/autocompounder/src/handlers/reply.rs:135-143.

Users depositing small amounts of funds could receive zero shares in exchange, effectively
losing access to those funds.

In addition, this issue causes the Autocompounder is vulnerable to share inflation attack to be
even more lucrative for an attacker.

Recommendation

We recommend returning an error if the calculation results in zero minted shares.

Status: Resolved

12. Unused variable in codebase

Severity: Informational

In the deposit function in
contracts/autocompounder/src/handlers/execute.rs:98, the
_staking_address variable is declared, but is not used.

Recommendation

We recommend removing the unused variable.

Status: Resolved

13. Lack of validation upon deposit lead to inefficiencies

Severity: Informational

The deposit function performs insufficient validation on funds to be forwarded for liquidity
provision in contracts/autocompounder/src/handlers/execute.rs:111-121.
As the funds variable is not explicitly checked to contain pool assets only, the contract would
try to provide liquidity with potentially erroneous assets in lines 140-144.

This will cause the execution of all the code in the function to end up erroring, consuming an
unnecessary amount of gas.

17



Recommendation

We recommend enforcing that the assets contained within the funds variable are part of the
target pool.

Status: Resolved

14. Remove TODO comments

Severity: Informational

The codebase includes multiple TODO comments. It is best practice to remove all pending
TODO items before releasing code to production.

Recommendation

We recommend resolving all TODO items.

Status: Resolved

15. Unused commented code in codebase

Severity: Informational

In contracts/autocompounder/src/handlers/instantiate.rs:78-82, there is
unused commented code. It is best practice to remove all unused commented code blocks
before code is released toproduction.

Recommendation

We recommend removing the unused code noted above.

Status: Resolved

16. Misleading variable name when withdrawing liquidity

Severity: Informational

In contracts/autocompounder/src/handlers/execute.rs:267 and 382, the
swap_msg variable is set when calling withdraw_liquidity on the specific DEX. The
swap_msg variable name is misleading, swaps are performed later on the DEX.

18



Recommendation

We recommend renaming the variable from swap_msg to withdraw_msg.

Status: Resolved

17. calculate_withdrawals sets expiration to current block
height which may become problematic if the function is exposed
in a future upgrade

Severity: Informational

In contracts/autocompounder/src/handlers/execute.rs:411-414, the
unbonding timestamp defaults to the current block height if config.unbonding_period
is None. This is not a security concern in the current implementation, since the
calculate_withdrawals function can only be called from the batch_unbond function,
which ensures the unbonding period is Some(_), as seen in lines 161-163.

If future code was introduced though that allows calling the calculate_withdrawals
function without going through the batch_unbond functions, it might cause withdrawals to
be unlocked immediately in the next block.

Recommendation

We recommend making the unbonding period a non-optional parameter, or unwrapping it and
returning an error if None is passed.

Status: Resolved

18. Users cannot query fees through smart queries

Severity: Informational

In contracts/autocompounder/src/handlers/query.rs:16-42, no exposed
queries return the fee configurations. Consequently, users cannot query the protocol's
configured performance, deposit, and withdrawal fees.

Recommendation

We recommend exposing a query that returns the fee configurations.

Status: Resolved

19



19. Panicking macros and debugging code

Severity: Informational

The autocompounder contract uses Rust panicking macros to handle undesired situations
in contracts/autocompounder/src/handlers/instantiate.rs:96 and 130.
Panicking macros do not report meaningful error messages for users to understand what
went wrong.

In addition, an eprintln! statement which is typically used for debugging purposes can be
found in contracts/autocompounder/src/handlers/execute.rs:357-360.

Recommendation

We recommend implementing adequate error handling, providing meaningful error messages,
and removing unnecessary lines for debugging purposes.

Status: Resolved

20. Overflow checks not enabled for release profile

Severity: Informational

The following packages and contracts do not enable overflow-checks for the release
profile:

● contracts/autocompounder/Cargo.toml
● packages/forty-two/Cargo.toml
● packages/forty-two-boot/Cargo.toml

While enabled implicitly through the workspace manifest, a future refactoring might break this
assumption.

Recommendation

We recommend enabling overflow checks in all packages, including those that do not
currently perform calculations, to prevent unintended consequences if changes are added in
future releases or during refactoring. Note that enabling overflow checks in packages other
than the workspace manifest will lead to compiler warnings.

Status: Resolved

21. Additional funds sent to the contract are lost

Severity: Informational

The deposit function does not check whether additional native tokens are sent along the
message in contracts/autocompounder/src/handlers/execute.rs:89-157.

20



Any additional native tokens are not returned to the user, so they will be stuck in the contract
forever.

While blockchains generally do not protect users from sending funds to the wrong accounts,
reverting extra funds increases the user experience.

Recommendation

We recommend checking that the transaction contains only the expected Coin using
https://docs.rs/cw-utils/latest/cw_utils/fn.must_pay.html.

Status: Resolved

21

https://docs.rs/cw-utils/latest/cw_utils/fn.must_pay.html


Appendix A: Test Cases
1. Test case for “Compounding will fail for zero performance fees”

The test case should pass if the issue is patched.

#[test]

fn test_zero_performance_fees() -> AResult {

use forty_two::autocompounder::AutocompounderExecuteMsg;

let owner = Addr::unchecked(test_utils::OWNER);

let wyndex_owner = Addr::unchecked(WYNDEX_OWNER);

// create testing environment

let (_, mock) = instantiate_default_mock_env(&owner)?;

// create a vault

let mut vault = crate::create_vault(mock.clone())?;

let WynDex {

eur_token,

usd_token,

eur_usd_staking,

..

} = vault.wyndex;

let eur_asset = AssetEntry::new("eur");

let usd_asset = AssetEntry::new("usd");

// give user some funds

mock.set_balances(&[

(

&owner,

&[

coin(100_000u128, eur_token.to_string()),

coin(100_000u128, usd_token.to_string()),

],

),

(&wyndex_owner, &[coin(100_000u128, WYND_TOKEN.to_string())]),

])?;

// update performance fees to zero

let manager_addr = vault.os.manager.address()?;

vault.auto_compounder.call_as(&manager_addr).execute_app(AutocompounderExecuteMs

g::UpdateFeeConfig { performance: Some(Decimal::zero()), deposit: None,

withdrawal: None }, None)?;

// initial deposit must be > 1000 (of both assets)

// this is set by WynDex

22



vault.auto_compounder.deposit(

vec![

AnsAsset::new(eur_asset, 100_000u128),

AnsAsset::new(usd_asset, 100_000u128),

],

&[coin(100_000u128, EUR), coin(100_000u128, USD)],

)?;

// process block -> the AC should have pending rewards at the staking

contract

mock.next_block()?;

// distribute rewards

vault.wyndex.suite.distribute_funds(

eur_usd_staking,

wyndex_owner.as_str(),

&coins(1000, WYND_TOKEN),

)?;

// compound rewards

vault.auto_compounder.compound()?;

Ok(())

}

23


